Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.02.05.527215

ABSTRACT

SARS-CoV-2 infection of vaccinated individuals is increasingly common but rarely results in severe disease, likely due to the enhanced potency and accelerated kinetics of memory immune responses. However, there have been few opportunities to rigorously study early recall responses during human viral infection. To better understand human immune memory and identify potential mediators of lasting vaccine efficacy, we used high-dimensional flow cytometry and SARS-CoV-2 antigen probes to examine immune responses in longitudinal samples from vaccinated individuals infected during the Omicron wave. These studies revealed heightened Spike-specific responses during infection of vaccinated compared to unvaccinated individuals. Spike-specific CD4 T cells and plasmablasts expanded and CD8 T cells were robustly activated during the first week. In contrast, memory B cell activation, neutralizing antibody production, and primary responses to non-Spike antigens occurred during the second week. Collectively, these data demonstrate the functionality of vaccine-primed immune memory and highlight memory T cells as rapid responders during SARS-CoV-2 infection.


Subject(s)
COVID-19 , Breakthrough Pain
2.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.09.27.509738

ABSTRACT

The constant domains of antibodies are important for effector functions, but less is known about how they can affect binding and neutralization of viruses. Here we evaluated a panel of human influenza virus monoclonal antibodies (mAbs) expressed as IgG1, IgG2 or IgG3. We found that many influenza virus-specific mAbs have altered binding and neutralization capacity depending on the IgG subclass encoded, and that these differences result from unique bivalency capacities of the subclasses. Importantly, subclass differences in antibody binding and neutralization were greatest when the affinity for the target antigen was reduced through antigenic mismatch. We found that antibodies expressed as IgG3 bound and neutralized antigenically drifted influenza viruses more effectively. We obtained similar results using a panel of SARS-CoV-2-specific mAbs and the antigenically advanced B.1.351 strain of SARS-CoV-2. We found that a licensed therapeutic mAb retained neutralization breadth against SARS-CoV-2 variants when expressed as IgG3, but not IgG1. These data highlight that IgG subclasses are not only important for fine-tuning effector functionality, but also for binding and neutralization of antigenically drifted viruses.

3.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.02.20.481163

ABSTRACT

Despite a clear role in protective immunity, the durability and quality of antibody and memory B cell responses induced by mRNA vaccination, particularly by a 3rd dose of vaccine, remains unclear. Here, we examined antibody and memory B cell responses in a cohort of individuals sampled longitudinally for ~9-10 months after the primary 2-dose mRNA vaccine series, as well as for ~3 months after a 3rd mRNA vaccine dose. Notably, antibody decay slowed significantly between 6- and 9-months post-primary vaccination, essentially stabilizing at the time of the 3rd dose. Antibody quality also continued to improve for at least 9 months after primary 2-dose vaccination. Spike- and RBD-specific memory B cells were stable through 9 months post-vaccination with no evidence of decline over time, and ~40-50% of RBD-specific memory B cells were capable of simultaneously recognizing the Alpha, Beta, Delta, and Omicron variants. Omicron-binding memory B cells induced by the first 2 doses of mRNA vaccine were boosted significantly by a 3rd dose and the magnitude of this boosting was similar to memory B cells specific for other variants. Pre-3rd dose memory B cell frequencies correlated with the increase in neutralizing antibody titers after the 3rd dose. In contrast, pre-3rd dose antibody titers inversely correlated with the fold-change of antibody boosting, suggesting that high levels of circulating antibodies may limit reactivation of immunological memory and constrain further antibody boosting by mRNA vaccines. These data provide a deeper understanding of how the quantity and quality of antibody and memory B cell responses change over time and number of antigen exposures. These data also provide insight into potential immune dynamics following recall responses to additional vaccine doses or post-vaccination infections.


Subject(s)
Immune System Diseases
4.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.16.21263686

ABSTRACT

Vaccine-mediated immunity often relies on the generation of protective antibodies and memory B cells, which commonly stem from germinal center (GC) reactions. An in-depth comparison of the GC responses elicited by SARS-CoV-2 mRNA vaccines in healthy and immunocompromised individuals has not yet been performed due to the challenge of directly probing human lymph nodes. In this study, through a fine-needle-aspiration-based approach, we profiled the immune responses to SARS-CoV-2 mRNA vaccines in lymph nodes of healthy individuals and kidney transplant (KTX) recipients. We found that, unlike healthy subjects, KTX recipients presented deeply blunted SARS-CoV-2-specific GC B cell responses coupled with severely hindered T follicular helper cells, SARS-CoV-2 receptor-binding-domain-specific memory B cells and neutralizing antibodies. KTX recipients also displayed reduced SARS-CoV-2-specific CD4 and CD8 T cell frequencies. Broadly, these data indicate impaired GC-derived immunity in immunocompromised individuals, and suggest a GC-origin for certain humoral and memory B cell responses following mRNA vaccination.

5.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.23.457229

ABSTRACT

SARS-CoV-2 mRNA vaccines have shown remarkable efficacy, especially in preventing severe illness and hospitalization. However, the emergence of several variants of concern and reports of declining antibody levels have raised uncertainty about the durability of immune memory following vaccination. In this study, we longitudinally profiled both antibody and cellular immune responses in SARS-CoV-2 naive and recovered individuals from pre-vaccine baseline to 6 months post-mRNA vaccination. Antibody and neutralizing titers decayed from peak levels but remained detectable in all subjects at 6 months post-vaccination. Functional memory B cell responses, including those specific for the receptor binding domain (RBD) of the Alpha (B.1.1.7), Beta (B.1.351), and Delta (B.1.617.2) variants, were also efficiently generated by mRNA vaccination and continued to increase in frequency between 3 and 6 months post-vaccination. Notably, most memory B cells induced by mRNA vaccines were capable of cross-binding variants of concern, and B cell receptor sequencing revealed significantly more hypermutation in these RBD variant-binding clones compared to clones that exclusively bound wild-type RBD. Moreover, the percent of variant cross-binding memory B cells was higher in vaccinees than individuals who recovered from mild COVID-19. mRNA vaccination also generated antigen-specific CD8+ T cells and durable memory CD4+ T cells in most individuals, with early CD4+ T cell responses correlating with humoral immunity at later timepoints. These findings demonstrate robust, multi-component humoral and cellular immune memory to SARS-CoV-2 and current variants of concern for at least 6 months after mRNA vaccination. Finally, we observed that boosting of pre-existing immunity with mRNA vaccination in SARS-CoV-2 recovered individuals primarily increased antibody responses in the short-term without significantly altering antibody decay rates or long-term B and T cell memory. Together, this study provides insights into the generation and evolution of vaccine-induced immunity to SARS-CoV-2, including variants of concern, and has implications for future booster strategies. GRAPHICAL ABSTRACT O_FIG O_LINKSMALLFIG WIDTH=146 HEIGHT=200 SRC="FIGDIR/small/457229v1_ufig1.gif" ALT="Figure 1"> View larger version (32K): org.highwire.dtl.DTLVardef@16c64b1org.highwire.dtl.DTLVardef@146ca3aorg.highwire.dtl.DTLVardef@86b7edorg.highwire.dtl.DTLVardef@956879_HPS_FORMAT_FIGEXP M_FIG C_FIG


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
6.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-798453.v1

ABSTRACT

Concerns with current mRNA Lipid Nanoparticle (LNP) systems include dose-limiting reactogenicity, adverse events that may be partly due to systemic off target expression of the immunogen, and a very limited understanding of the mechanisms responsible for the frozen storage requirement. We applied a new rational design process to identify a novel multiprotic ionizable lipid, called C24, as the key component of the mRNA LNP delivery system. We show that the resulting C24 LNP has a multistage protonation behavior resulting in greater endosomal protonation and greater translation of an mRNA-encoded luciferase reporter after intramuscular (IM) administration compared to the standard reference MC3 LNP. Off-target expression in liver after IM administration was reduced 6 fold for the C24 LNP compared to MC3. Neutralizing titers in immunogenicity studies delivering a nucleoside-modified mRNA encoding for the diproline stabilized spike protein immunogen were 10 fold higher for the C24 LNP versus MC3, and protection against viral challenge in a SARS-CoV-2 mouse model occurred at a very low 0.25 µg prime/boost dose of the same immunogen in the C24 LNP. Injection site inflammation was notably reduced for C24 compared to MC3. In addition, we found the C24 LNP to be entirely stable in bioactivity and mRNA integrity when stored at 4 ºC for at least 19 days. Storage at higher temperatures reduced both bioactivity and mRNA integrity, but less so for C24 than MC3, and in a manner consistent with the phosphodiester transesterification reaction mechanism of mRNA cleavage. The higher potency, lower injection site inflammation, and higher stability of the C24 LNP present important advancements in the evolution mRNA vaccine delivery.

7.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.08.16.456441

ABSTRACT

Prevention of COVID-19 is widely believed to depend on neutralization of SARS-CoV-2 by vaccine-induced humoral immunity 1,2 , raising concern that emerging escape variants may perpetuate the pandemic 3–6 . Here we show that a single intramuscular injection of Adeno-Associated Virus-6 (AAV6) or AAV9 encoding a modified, N-terminal domain deleted (ΔNTD) spike protein induces robust cellular immunity and provides long-term protection in k18-hACE2 transgenic mice from lethal SARS-CoV-2 challenge, associated weight loss and pneumonia independent of vaccine-induced neutralizing humoral immunity. In both mice and macaques, vaccine-induced cellular immunity results in the clearance of transduced muscle fibers coincident with macrophage and CD8+ cytotoxic T cell infiltration at the site of immunization. Additionally, mice demonstrate a strong Type-1 polarized cellular immunophenotype and equivalent ex vivo T cell reactivity to peptides of wt and alpha (B.1.1.7) variant spike. These studies demonstrate not only that AAV6 and AAV9 can function as effective vaccine platforms, but also that vaccines can provide long-term efficacy primarily through the induction of cellular immunity. The findings may provide an alternative approach to containment of the evolving COVID-19 pandemic and have broader implications for the development of variant-agnostic universal vaccines against a wider range of pathogens.


Subject(s)
Pneumonia , COVID-19
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.23.21259389

ABSTRACT

SARS-CoV-2 mRNA vaccination in healthy individuals generates effective immune protection against COVID-19. Little is known, however, about the SARS-CoV-2 mRNA vaccine-induced responses in immunosuppressed patients. We investigated induction of antigen-specific antibody, B cell and T cell responses in patients with multiple sclerosis on anti-CD20 (MS-aCD20) monotherapy following SARS-CoV-2 mRNA vaccination. Treatment with aCD20 significantly reduced Spike and RBD specific antibody and memory B cell responses in most patients, an effect that was ameliorated with longer duration from last aCD20 treatment and extent of B cell reconstitution. In contrast, all MS-aCD20 patients generated antigen-specific CD4 and CD8 T-cell responses following vaccination. However, treatment with aCD20 skewed these responses compromising circulating Tfh responses and augmenting CD8 T cell induction, while largely preserving Th1 priming. These data also revealed underlying features of coordinated immune responses following mRNA vaccination. Specifically, the MS-aCD20 patients who failed to generate anti-RBD IgG had the most severe defect in cTfh cell responses and more robust CD8 T cell responses compared to those who generated anti-RBD IgG, whose T cell responses were more similar to healthy controls. These data define the nature of SARS-CoV-2 vaccine-induced immune landscape in aCD20-treated patients, and provide insights into coordinated mRNA vaccine-induced immune responses in humans. Our findings have implications for clinical decision-making, patient education and public health policy for patients treated with aCD20 and other immunosuppressed patients.


Subject(s)
Multiple Sclerosis , COVID-19
9.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.04.21.440862

ABSTRACT

The SARS-CoV-2 mRNA vaccines have shown remarkable clinical efficacy, but questions remain about the nature and kinetics of T cell priming. We performed longitudinal antigen-specific T cell analyses in healthy individuals following mRNA vaccination. Vaccination induced rapid near-maximal antigen-specific CD4+ T cell responses in all subjects after the first vaccine dose. CD8+ T cell responses developed gradually after the first and second dose and were variable. Vaccine-induced T cells had central memory characteristics and included both Tfh and Th1 subsets, similar to natural infection. Th1 and Tfh responses following the first dose predicted post-boost CD8+ T cell and neutralizing antibody levels, respectively. Integrated analysis of 26 antigen-specific T cell and humoral responses revealed coordinated features of the immune response to vaccination. Lastly, whereas booster vaccination improved CD4+ and CD8+ T cell responses in SARS-CoV-2 naive subjects, the second vaccine dose had little effect on T cell responses in SARS-CoV-2 recovered individuals. Thus, longitudinal analysis revealed robust T cell responses to mRNA vaccination and highlighted early induction of antigen-specific CD4+ T cells.

10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.03.21252872

ABSTRACT

Novel mRNA vaccines for SARS-CoV2 have been authorized for emergency use and are currently being administered to millions of individuals worldwide. Despite their efficacy in clinical trials, there is limited data on vaccine-induced immune responses in individuals with a prior SARS-CoV2 infection compared to SARS-CoV2 naive subjects. Moreover, how mRNA vaccines impact the development of antibodies as well as memory B cells in COVID-19 experienced versus COVID-19 naive subjects remains poorly understood. In this study, we evaluated antibody responses and antigen-specific memory B cell responses over time in 33 SARS-CoV2 naive and 11 SARS-CoV2 recovered subjects. mRNA vaccination induced significant antibody and memory B cell responses against full-length SARS-CoV2 spike protein and the spike receptor binding domain (RBD). SARS-CoV2 naive individuals benefitted from both doses of mRNA vaccine with additional increases in antibodies and memory B cells following booster immunization. In contrast, SARS-CoV2 recovered individuals had a significant immune response after the first dose with no increase in circulating antibodies or antigen-specific memory B cells after the second dose. Moreover, the magnitude of the memory B cell response induced by vaccination was lower in older individuals, revealing an age-dependence to mRNA vaccine-induced B cell memory. Side effects also tended to associate with post-boost antibody levels, but not with post-boost memory B cells, suggesting that side effect severity may be a surrogate of short-term antibody responses. The frequency of pre-vaccine antigen-specific memory B cells in SARS-CoV2 recovered individuals strongly correlated with post-vaccine antibody levels, supporting a key role for memory B cells in humoral recall responses to SARS-CoV2. This observation may have relevance for future booster vaccines and for responses to viral variants that partially escape pre-existing antibodies and require new humoral responses to be generated from memory B cells. Finally, post-boost antibody levels were not correlated with post-boost memory responses in SARS-CoV2 naive individuals, indicating that short-term antibody levels and memory B cells are complementary immunological endpoints that should be examined in tandem when evaluating vaccine response. Together, our data provide evidence of both serological response and immunological memory following mRNA vaccination that is distinct based on prior SARS-CoV2 exposure. These findings may inform vaccine distribution in a resource-limited setting.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19 , Immune System Diseases , Lymphoma, B-Cell
11.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.06.20227215

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread within the human population. Although SARS-CoV-2 is a novel coronavirus, most humans had been previously exposed to other antigenically distinct common seasonal human coronaviruses (hCoVs) before the COVID-19 pandemic. Here, we quantified levels of SARS-CoV-2-reactive antibodies and hCoV-reactive antibodies in serum samples collected from 204 humans before the COVID-19 pandemic. We then quantified pre-pandemic antibody levels in serum from a separate cohort of 252 individuals who became PCR-confirmed infected with SARS-CoV-2. Finally, we longitudinally measured hCoV and SARS-CoV-2 antibodies in the serum of hospitalized COVID-19 patients. Our studies indicate that most individuals possessed hCoV-reactive antibodies before the COVID-19 pandemic. We determined that [~]23% of these individuals possessed non-neutralizing antibodies that cross-reacted with SARS-CoV-2 spike and nucleocapsid proteins. These antibodies were not associated with protection against SARS-CoV-2 infections or hospitalizations, but paradoxically these hCoV cross-reactive antibodies were boosted upon SARS-CoV-2 infection.


Subject(s)
COVID-19
12.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3692555

ABSTRACT

Background: Climate change impacts are felt disproportionately in developing countries, and in particular Southern Asia experiences the most damaging hydrometeorological events in the world, with loss of life from past cyclones in the hundreds of thousands. Despite this, the Bay of Bengal cyclone basin receives far less research attention than many of the others around the world. Here, we study the historical and future impacts of Super Cyclone Amphan, which made landfall in May 2020, bringing storm surges of 2-4 meters to coastlines of India and Bangladesh. Methods: In this modelling study, we combine projections of sea level rise from the Coupled Model Intercomparison Projection, phase 6 (CMIP6), with estimates of storm surge using a dynamic storm surge model. Sampling the spectrum of possible sea level rises, we consider a low, medium and high scenario, based on projections in 2100. We then feed these into a flood inundation model to simulate storm surge-induced flooding, had Cyclone Amphan occurred in these future worlds. Finally, we consider the change in future population growth and urbanisation, thereby calculating the change in population exposure to these future flooding events. Our approach is that of the extreme event attribution community, but projecting into the future rather than interrogating the past. Findings: We find that in 2100, the local sea level rise in the Bay of Bengal during the pre-monsoon cyclone season is between 0.32-0.84 m, depending on which emissions scenario is followed. If a Cyclone Amphan-scale storm surge occurred on top of that sea level rise, the future population of both India and Bangladesh will be more exposed, with India showing >200% increased exposure to extreme (>3 m) and moderate (>1 m) flooding under a high emissions scenario, and Bangladesh showing ~60-80% increased exposure to the same scenarios. The majority of this change in both countries comes from sea level rise rather than population changes, and in Bangladesh the future population change contributes negatively to the change in exposure, as more citizens migrate further inshore. However, if we follow an emissions scenario consistent with meeting the upper Paris Agreement climate goal, we project very little change in exposure. Interpretation: There is an urgent need to reduce carbon emissions to net zero, to prevent the negative impacts of climate change. By far the majority of cyclone research has been undertaken for countries such as America and Japan, with less resilient countries such as those in South Asia, which are more sensitive to changes in climate, seeing far less attention. With Cyclone Amphan occurring at the height of the COVID-19 crisis, we highlight how the risk was compounded and recommend that future climate risk assessments explicitly account for these potential non-linearities. Funding Statement: The main funding is from the Natural Environment Research Council.Declaration of Interests: The authors declare no competing interests.


Subject(s)
COVID-19
13.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.17.20176552

ABSTRACT

SARS-CoV-2 antibody responses in children remain poorly characterized. Here, we show that pediatric patients with multisystem inflammatory syndrome in children (MIS-C) possess higher SARS-CoV-2 spike IgG titers compared to those with severe coronavirus disease 2019 (COVID-19), likely reflecting a longer time since onset of infection in MIS-C patients.


Subject(s)
COVID-19 , Cryopyrin-Associated Periodic Syndromes
SELECTION OF CITATIONS
SEARCH DETAIL